RASAL2, a RAS GTPase-activating protein, inhibits stemness and epithelial–mesenchymal transition via MAPK/SOX2 pathway in bladder cancer

نویسندگان

  • Ke Hui
  • Yang Gao
  • Jun Huang
  • Shan Xu
  • Bin Wang
  • Jin Zeng
  • Jinhai Fan
  • Xinyang Wang
  • Yangyang Yue
  • Shiqi Wu
  • Jer-Tsong Hsieh
  • Dalin He
  • Kaijie Wu
چکیده

Muscle-invasive or metastatic bladder cancer (BCa) is associated with a very poor prognosis, and the underlying mechanism remains poorly understood. In this study, we demonstrate RASAL2, a RAS GTPase-activating protein (RAS GAP), acts as a tumor suppressor in BCa. First, RASAL2 was downregulated in BCa specimens and inversely correlated with pathological grades and clinical stages. Furthermore, we observed that RASAL2 could inhibit BCa stemness and epithelial-mesenchymal transition (EMT) based on our gain-of-function and loss-of-function experiments. Mechanistically, we found that mitogen-activated protein kinase/SOX2 signaling had a critical role for maintaining the stemness and mesenchymal properties of RASAL2-deficient BCa cells because inhibition of ERK activity or knockdown of SOX2 could reverse these phenotypes. Also, RASAL2 could inhibit BCa tumorigenesis and distant metastasis in vivo. Moreover, there was an inverse correlation between RASAL2 expression and the stemness/EMT status in subcutaneous xenograft and human BCa specimens. Taken together, our data indicate that RASAL2 is a tumor suppressor in BCa, and modulates cancer stemness and EMT for BCa recurrence and metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RASAL2 down-regulation in ovarian cancer promotes epithelial-mesenchymal transition and metastasis

Ovarian cancer is the most lethal gynecologic malignancy, and transcoelomic metastasis is responsible for the greatest disease mortality. Although intensive efforts have been made, the mechanism behind this process remains unclear. RASAL2 is a GTPase activating proteins (GAPs) which was recently reported as a tumor suppressor in breast cancer. In this study, we identified RASAL2 as a regulator ...

متن کامل

Downregulation of RASAL2 promotes the proliferation, epithelial-mesenchymal transition and metastasis of colorectal cancer cells.

RAS protein activator like 2 (RASAL2) is a RAS-GTPase-activating protein and has recently been identified to be a tumor suppressor in various types of human cancer; however, the function of RASAL2 in colorectal carcinoma (CRC) remains unclear. In the present study, the function of RASAL2 in CRC cells was investigated using a RASAL2 loss-of-function cell model. RASAL2 short hairpin RNA was trans...

متن کامل

N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells.

N-cadherin has been reported to be upregulated and associated with metastasis and poor prognosis in prostate cancer patients, however the underlying mechanism still remains puzzling. In the present study, we found that upregulation of N-cadherin enhanced, while downregulation of N-cadherin impaired the invasion, migration, and epithelial to mesenchymal transition (EMT) of prostate cancer (PCa) ...

متن کامل

RASAL2 activates RAC1 to promote triple-negative breast cancer progression.

Patients with triple-negative breast cancer (TNBC) have a high incidence of early relapse and metastasis; however, the molecular basis for recurrence in these individuals remains poorly understood. Here, we demonstrate that RASAL2, which encodes a RAS-GTPase-activating protein (RAS-GAP), is a functional target of anti-invasive microRNA-203 and is overexpressed in a subset of triple-negative or ...

متن کامل

Involvement of Ras GTPase-activating protein SH3 domain-binding protein 1 in the epithelial-to-mesenchymal transition-induced metastasis of breast cancer cells via the Smad signaling pathway

In situ models of epithelial-to-mesenchymal transition (EMT)-induced carcinoma develop into metastatic carcinoma, which is associated with drug resistance and disease recurrence in human breast cancer. Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1), an essential Ras mediator, has been implicated in cancer development, including cell growth, motility, invasion and apoptosis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017